576 research outputs found

    On Integer Programming, Discrepancy, and Convolution

    Full text link
    Integer programs with a constant number of constraints are solvable in pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial running time than previous results. Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be improved significantly. We show that further improvements to our pseudo-polynomial algorithm for any fixed number of constraints are equivalent to improvements for (min, +)-convolution. This is a strong evidence that our algorithm's running time is the best possible. We also present a faster specialized algorithm for testing feasibility of an integer program with few constraints and for this we also give a tight lower bound, which is based on the SETH.Comment: A preliminary version appeared in the proceedings of ITCS 201

    Compact LP Relaxations for Allocation Problems

    Get PDF
    We consider the restricted versions of Scheduling on Unrelated Machines and the Santa Claus problem. In these problems we are given a set of jobs and a set of machines. Every job j has a size p_j and a set of allowed machines Gamma(j), i.e., it can only be assigned to those machines. In the first problem, the objective is to minimize the maximum load among all machines; in the latter problem it is to maximize the minimum load. For these problems, the strongest LP relaxation known is the configuration LP. The configuration LP has an exponential number of variables and it cannot be solved exactly unless P = NP. Our main result is a new LP relaxation for these problems. This LP has only O(n^3) variables and constraints. It is a further relaxation of the configuration LP, but it obeys the best bounds known for its integrality gap (11/6 and 4). For the configuration LP these bounds were obtained using two local search algorithm. These algorithms, however, differ significantly in presentation. In this paper, we give a meta algorithm based on the local search ideas. With an instantiation for each objective function, we prove the bounds for the new compact LP relaxation (in particular, for the configuration LP). This way, we bring out many analogies between the two proofs, which were not apparent before

    New Approximability Results for Two-Dimensional Bin Packing

    Get PDF
    We study the two-dimensional bin packing problem: Given a list of n rectangles the objective is to find a feasible, i.e. axis-parallel and non-overlapping, packing of all rectangles into the minimum number of unit sized squares, also called bins. Our problem consists of two versions; in the first version it is not allowed to rotate the rectangles while in the other it is allowed to rotate the rectangles by 90∘, i.e. to exchange the widths and the heights. Two-dimensional bin packing is a generalization of its one-dimensional counterpart and is therefore strongly NP-hard. Furthermore Bansal et al. showed that even an APTAS is ruled out for this problem, unless P=NP. This lower bound of asymptotic approximability was improved by Chlebik and Chlebikova to values 1+1/3792 and 1+1/2196 for the version with and without rotations, respectively. On the positive side there is an asymptotic 1.69.. approximation by Caprara without rotations and an asymptotic 1.52... approximation by Bansal et al.for both versions. We give a new asymptotic upper bound for both versions of our problem: For any fixed ε and any instance that fits optimally into OPT bins, our algorithm computes a packing into (3/2+ε)⋅OPT+69 bins in the version without rotations and (3/2+ε)⋅OPT+39 bins in the version with rotations. The algorithm has polynomial running time in the input length. In our new technique we consider an optimal packing of the rectangles into the bins. We cut a small vertical or horizontal strip out of each bin and move the intersecting rectangles into additional bins. This enables us to either round the widths of all wide rectangles, or the heights of all long rectangles in this bin. After this step we round the other unrounded side of these rectangles and we achieve a solution with a simple structure and only few types of rectangles. Our algorithm initially rounds the instance and computes a solution that nearly matches the modified optimal solution

    How to Maximize the Total Area of Rectangles Packed into a Rectangle?

    Get PDF
    We study an interesting geometric optimization problem. We are given a set of rectangles and a rectangular target area called bin. The goal is to find a feasible packing of a subset of the given rectangles into the bin, i.e. an orthogonal packing without rotation and overlap. The objective is to maximize the total area of rectangles packed. This problem is strongly NP\mathcal{NP}-hard even for squares, therefore there is no fully polynomial time approximation scheme (FPTAS) for this problem, unless P=NP\mathcal{P}=\mathcal{NP}. The previously best result is a \left(\nicefrac{1}{2}-\varepsilon\right)-approximation by Jansen \& Zhang for our problem. We present a polynomial time approximation scheme (PTAS) for this problem, i.e. a family of algorithms which compute for any accuracy ε>0\varepsilon>0 in polynomial time a solution with ratio (1−ε)\left(1-\varepsilon\right)

    On Integer Programming and Convolution

    Get PDF
    Integer programs with a constant number of constraints are solvable in pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial running time than previous results. Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be improved significantly. We show that further improvements to our pseudo-polynomial algorithm for any fixed number of constraints are equivalent to improvements for (min, +)-convolution. This is a strong evidence that our algorithm\u27s running time is the best possible. We also present a faster specialized algorithm for testing feasibility of an integer program with few constraints and for this we also give a tight lower bound, which is based on the SETH

    Local Search Breaks 1.75 for Graph Balancing

    Get PDF
    Graph Balancing is the problem of orienting the edges of a weighted multigraph so as to minimize the maximum weighted in-degree. Since the introduction of the problem the best algorithm known achieves an approximation ratio of 1.75 and it is based on rounding a linear program with this exact integrality gap. It is also known that there is no (1.5 - epsilon)-approximation algorithm, unless P=NP. Can we do better than 1.75? We prove that a different LP formulation, the configuration LP, has a strictly smaller integrality gap. Graph Balancing was the last one in a group of related problems from literature, for which it was open whether the configuration LP is stronger than previous, simple LP relaxations. We base our proof on a local search approach that has been applied successfully to the more general Restricted Assignment problem, which in turn is a prominent special case of makespan minimization on unrelated machines. With a number of technical novelties we are able to obtain a bound of 1.749 for the case of Graph Balancing. It is not clear whether the local search algorithm we present terminates in polynomial time, which means that the bound is non-constructive. However, it is a strong evidence that a better approximation algorithm is possible using the configuration LP and it allows the optimum to be estimated within a factor better than 1.75. A particularly interesting aspect of our techniques is the way we handle small edges in the local search. We manage to exploit the configuration constraints enforced on small edges in the LP. This may be of interest to other problems such as Restricted Assignment as well

    Online Bin Covering with Limited Migration

    Get PDF
    Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. This is motivated by the fact that the pure online model is often too restrictive to model real-world applications, where some changes might be allowed. A well-studied measure of the amount of decisions that can be revoked is the migration factor beta: When an object o of size s(o) arrives, the decisions for objects of total size at most beta * s(o) may be revoked. Usually beta should be a constant. This means that a small object only leads to small changes. This measure has been successfully investigated for different, classical problems such as bin packing or makespan minimization. The dual of makespan minimization - the Santa Claus or machine covering problem - has also been studied, whereas the dual of bin packing - the bin covering problem - has not been looked at from such a perspective. In this work, we extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case - where only insertions are allowed - and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio (up to an arbitrary small epsilon). We therefore resolve the competitiveness of the bin covering problem with migration

    Near-Linear Time Algorithm for n-fold ILPs via Color Coding

    Get PDF
    We study an important case of ILPs max {c^Tx | Ax = b, l <= x <= u, x in Z^{n t}} with n * t variables and lower and upper bounds l, u in Z^{nt}. In n-fold ILPs non-zero entries only appear in the first r rows of the matrix A and in small blocks of size s x t along the diagonal underneath. Despite this restriction many optimization problems can be expressed in this form. It is known that n-fold ILPs can be solved in FPT time regarding the parameters s, r, and Delta, where Delta is the greatest absolute value of an entry in A. The state-of-the-art technique is a local search algorithm that subsequently moves in an improving direction. Both, the number of iterations and the search for such an improving direction take time Omega(n), leading to a quadratic running time in n. We introduce a technique based on Color Coding, which allows us to compute these improving directions in logarithmic time after a single initialization step. This leads to the first algorithm for n-fold ILPs with a running time that is near-linear in the number nt of variables, namely (rs Delta)^{O(r^2s + s^2)} L^2 * nt log^{O(1)}(nt), where L is the encoding length of the largest integer in the input. In contrast to the algorithms in recent literature, we do not need to solve the LP relaxation in order to handle unbounded variables. Instead, we give a structural lemma to introduce appropriate bounds. If, on the other hand, we are given such an LP solution, the running time can be decreased by a factor of L
    • …
    corecore